Wednesday, July 18, 2012

Applied Probability - Lange K.

Applied Probability - Lange K.

  • Hardcover: 320 pages
  • Publisher: Springer (March 12, 2003)
  • Language: English
  • ISBN-10: 0387004254
  • ISBN-13: 978-0387004259
  • Product Dimensions: 9.2 x 0.8 x 6.1 inches 


Despite  the fears of  university mathematics  departments,  mathematics
educat,ion is  growing  rather  than  declining. But  the truth  of  the matter
is  that  the  increases  are  occurring  outside  departments of  mathematics.
Engineers,  computer  scientists,  physicists,  chemists,  economists, statisti-
cians,  biologists, and  even  philosophers  teach  and  learn  a  great  deal  of
mathematics. The teaching  is not  always terribly  rigorous, but  it tends to
be  better  motivated  and  better  adapted  to  the  needs of students.  In  my
own  experience teaching  students of  biostatistics  and  mathematical  biol-
ogy,  I  attempt  to convey both  the beauty  and  utility of  probability. This
is a tall order, partially  because probability  theory has its own vocabulary
and habits of  thought. The axiomatic presentation  of  advanced probability
typically proceeds via  measure  theory.  This  approach  has  the advantage
of  rigor, but  it inwitably  misses most  of  the interesting applications,  and
many applied scientists rebel against the onslaught of  technicalities. In the
current  book, I  endeavor to achieve a balance  between  theory  and  appli-
cations  in  a rather  short compass. While  the combination  of  brevity  apd
balance sacrifices many of  the proofs of  a rigorous course, it  is still consis-
tent  with  supplying students with  many  of  the relevant  theoretical  tools.
In  my  opinion, it  better  to present  the mathematical  facts without  proof
rather than omit them altogether.
In the preface to his lovely recent textbook  (1531, David Williams writes,
“Probability and  Statistics used  to be married; then they  separated,  then
they  got  divorced; now  they  hardly  see each  other.”  Although  this  split
is doubtless irreversible, at least  we  ought  to be concerned with  properly 
bringing up  their  children, applied  probability  and  computational statis-
tics.  If we  fail, then science as a whole will  suffer. You  see  before you  my
attempt to give applied probability the attention it deserves.  My  other re-
cent book (951 covers computational statistics and aspects of  computational
probability glossed over here.
This graduate-level textbook presupposes knowledge of  multivariate cal-
culus,  linear  algehra,  and  ordinary  differential  equations.  In  probability
theory, students should be comfortable with elementary combinatorics, gen-
erating functions, probability densities and distributions, expectations, and
conditioning arguments. My intended audience includes graduate students
in applied mathematics, biostatistics, computational biology, computer sci-
ence, physics, and statistics.  Because of the diversity of needs, instructors
are encouraged to exercise their own judgment  in  deciding what  chapters
and.topics to cover.
Chapter  1  reviews elementary probability  while  striving to give  a  brief
survey of  relevant  results  from measure theory. Poorly prepared  students
should supplement this  material with outside  reading. Well-prepared stu-
dents can skim Chapter  1 until they  reach  the less well-knom' material  of
the  final  two sections. Section  1.8 develops properties  of  the  multivariate
normal distribution of  special interest to students in biostatistics  and sta-
tistics. This material  h applied to optimization  theory  in Section 3.3 and
to diffusion processes in Chapter 11.
We get down to serious business in Chapter 2, which is an extended essay
on  calculating  expectations.  Students  often  camplain  that  probability  is
nothing more than  a bag of tricks. For  better or worse, they are confronted
here  with  some of  those  tricks.  Readers  may  want  to skip the  ha1 two
sections of  the chapter on surface area distributions on a first pass through
the book.
Chapter  3 touches on advanced topics from  convexity, inequalities, and
optimization.  Beside the obvious applications to computational statistics,
part  of  the  motivation  for  this  material  is  its  applicability in  calculating
bounds on  probabilities and  moments.
Combinatorics has the odd  reputation  of  being difficult in spite of  rely-
ing on elementary methods.  Chapters 4 and  5  are my  stab at making the
subject accessible and interesting. There is no doubt in my  mind  of  combi-
natorics' practical importance. More and more we  live in a world domiuated
by  discrete  bits  of  information. The stress on  algorithms  in  Chapter  5  is
intended  to appeal to computer scientists.
Chapt,ers 6  through  11 cover core material  on stochastic processes that
I  have  taught  to students  in  mathematical  biology  over  a span  of  many
years. If  supplemented with  appropriate  sections from  Chapters  1 and  2,
there  is  su6cient  material  here  for  a  traditional  semester-long  course  in
stochastic processes. Although my  examples are weighted  toward biology,
particularly  genetics, I have  tried  to achieve  variety.  The fortunes of  this
hook doubtless will  hinge on how  cornpelling readers find  these example.

Download