Saturday, July 21, 2012

An Introduction to Complex Analysis for Engineers - M. Adler

An Introduction to Complex Analysis for Engineers - M. Adler






Contents
1 Li n e a r spa c e s; n or m e d spa c e s; fir st e x a m pl e s 9
1.1 L inea r spa ces . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 No r med spa ces; first ex a mples . . . . . . . . . . . . . 11
1.2.1 H ¨o lder ineq u a lit y. . . . . . . . . . . . . . . . . 12
1.2.2 M inko w ski ineq u a lit y . . . . . . . . . . . . . . 13
1.3 Co mplet eness; co mplet io n . . . . . . . . . . . . . . . 16
1.3.1 Co nst ru ct io n o f co mplet io n . . . . . . . . . . 17
1.4 Ex er cises . . . . . . . . . . . . . . . . . . . . . . . . . 18
2 H i l b e r t spa c e s 21
2.1 Ba sic no t io ns; first ex a mples . . . . . . . . . . . . . . 21
2.1.1 Ca u chy-Schw a rt z ineq u a lit y . . . . . . . . . . 22
2.1.2 Bessel’s ineq u a lit y . . . . . . . . . . . . . . . 23
2.1.3 G ra m-Schmidt o rt ho go na liz a t io n pr o cedu r e . 24
2.1.4 Pa rseva l’s eq u a lit y . . . . . . . . . . . . . . . 25
2.2 Pr o ject io ns; deco mpo sit io ns . . . . . . . . . . . . . . 27
2.2.1 Sepa ra ble ca se . . . . . . . . . . . . . . . . . . 27
2.2.2 U niq u eness o f t he dist a nce fr o m a po int t o a
co nvex set : t he geo met ric mea ning . . . . . . 27
2.2.3 O rt ho go na l deco mpo sit io n . . . . . . . . . . . 28
2.3 L inea r fu nct io na ls . . . . . . . . . . . . . . . . . . . . 29
2.3.1 L inea r fu nct io na ls in a genera l linea r spa ce . 29
2.3.2 Bo u nded linea r fu nct io na ls in no r med spa ces.
The no r m o f a fu nct io na l . . . . . . . . . . . . 31
2.3.3 Bo u nded linea r fu nct io na ls in a H ilbert spa ce 32
2.3.4 A n Ex a mple o f a no n-sepa ra ble H ilbert spa ce: 32
2.4 Ex er cises . . . . . . . . . . . . . . . . . . . . . . . . . 33
5
6 CO NTENTS
3 T h e dua l spa c e  
39
3.1 H a hn-Ba na ch t heo r em a nd it s first co nseq u ences . 39
3.2 D u a l Spa ces . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Ex er cises: . . . . . . . . . . . . . . . . . . . . . . . . . 42
4 Boun de d l i n e a r ope r a t or s 43
4.1 Co mplet eness o f t he spa ce o f bo u nded linea r o pera -t o rs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Ex a mples o f linea r o pera t o rs . . . . . . . . . . . . . . 44
4.3 Co mpa ct o pera t o rs . . . . . . . . . . . . . . . . . . . 45
4.3.1 Co mpa ct set s . . . . . . . . . . . . . . . . . . 46
4.3.2 The spa ce o f co mpa ct o pera t o rs . . . . . . . . 48
4.4 D u a l O pera t o rs . . . . . . . . . . . . . . . . . . . . . . 48
4.5 D if fer ent co nvergences in t he spa ce
o f bo u nded o pera t o rs . . . . . . . . . . . . . . . 50
4.6 I nvert ible O pera t o rs . . . . . . . . . . . . . . . . . . 52
4.7 Ex er cises . . . . . . . . . . . . . . . . . . . . . . . . . 52
5 Spe c t r a l t h e or y 57
5.1 Cla ssifica t io n o f spect ru m . . . . . . . . . . . . . . . 57
5.2 Fr edho lm Theo ry o f co mpa ct o pera t o rs . . . . . . . . 58
5.3 Ex er cises . . . . . . . . . . . . . . . . . . . . . . . . . 63
6 Se l f a dj oi n t c om pa c t ope r a t or s 65
6.1 G enera l Pr o pert ies . . . . . . . . . . . . . . . . . . . 65
6.2 Ex er cises . . . . . . . . . . . . . . . . . . . . . . . . . 72
7 Se l f - a dj oi n t b oun de d ope r a t or s 73
7.1 O r der in t he spa ce o f symmet ric o pera t o rs . . . . . . 73
7.1.1 Pr o pert ies . . . . . . . . . . . . . . . . . . . . 73
7.2 Pr o ject io ns (pr o ject io n o pera t o rs) . . . . . . . . . . . 77
7.2.1 So me pr o pert ies o f pr o ject io ns in linea r
spa ces . . . . . . . . . . . . . . . . . . . . . . 77
8 F un c t i on s of ope r a t or s 79
8.1 Pr o pert ies o f t his co rr espo ndence (      ) . . . . . . 80
8.2 The ma in ineq u a lit y . . . . . . . . . . . . . . . . . . . 82
8.3 Simple spect ru m . . . . . . . . . . . . . . . . . . . . . 85
9 Spe c t r a l t h e or y of un i t a r y ope r a t or s 87
9.1 Spect ra l pr o pert ies . . . . . . . . . . . . . . . . . . . 87
CO NTENTS 7
10 T h e F un da m e n t a l T h e ore m s. 91
10.1 The o pen ma pping t heo r em . . . . . . . . . . . . . . 92
10.2 The Clo sed G ra ph Theo r em . . . . . . . . . . . . . . 94
10.3 The Ba na ch-St einha u s Theo r em . . . . . . . . . . . 95
10.4 Ba ses I n Ba na ch Spa ces . . . . . . . . . . . . . . . . 99
10.5 H a hn-Ba na ch Theo r em.
L inea r fu nct io na ls . . . . . . . . . . . . . . . . . . . . 100
10.6 Ex t r ema l po int s; The Kr ein-M ilma n Theo r em . . . . 108
11 Ba n a c h a l g e b r a s 111
11.1 A na lyt ic fu nct io ns . . . . . . . . . . . . . . . . . . . . 114
11.2 Ra dica ls . . . . . . . . . . . . . . . . . . . . . . . . . . 118
11.3 I nvo lu t io ns . . . . . . . . . . . . . . . . . . . . . . . . 120
12 Un b oun de d se l f - a dj oi n t a n d sym m e t r i c ope r a t or s i n   127
12.1 M o r e Pr o pert ies O f O pera t o rs . . . . . . . . . . . . . 131
12.2 The Spect ru m
. . . . . . . . . . . . . . . . . . . 132
12.3 Element s O f The “G ra ph M et ho d” . . . . . . . . . . . 133
12.4 Redu ct io n O f O pera t o r . . . . . . . . . . . . . . . . . 134
12.5 Ca yley T ra nsfo r m . . . . . . . . . . . . . . . . . . . . 136

Download