Friday, June 1, 2012

Galois Theory 2nd ed. - E. Artin

Galois Theory 2nd ed. - E. Artin



TABLE OF CONTENTS

(The sections marked with an asterisk
have been herein added to the content
of the first  edition)
Page
1 LINEAR ALGEBRA .................................... 1
A.  Fields........................................... 1
B. Vector   Spaces .................................... 1
C. Homogeneous Linear Equations ..................... 2
D. Dependence and Independence of Vectors .. , ......... 4
E. Non-homogeneous Linear Equations ................. 9
F.* Determinants ..................................... 11
II FIELD  THEORY ............................. <......... 21
A. Extension Fields ................................. 21
B. Polynomials ...................................... 22
C. Algebraic Elements ............................... 25
D. Splitting Fields ................................... 30
E. Unique Decomposition of Polynomials
into Irreducible Factors ........... , .......... 33
F. Group Characters ................................. 34
G.* Applications and Examples to Theorem 13 ............ 38
H. Normal Extensions ................................ 41
J.
Finite  Fields ............................... . .... 49
Roots of  Unity ............................. . . .., .. 56
K.  Noether  Equations ................................ 57
L. Kummer’s Fields ....................... . .......... 59
M. Simple Extensions ................................ 64
N. Existence of a Normal Basis ........... , ........... 66
Q. Theorem on  Natural  Irrationalities ................... 67
111 APPLICATIONS
By A. N.  Milgram., ..................... , ........... 69
A. Solvable Groups .................................. 69
B. Permutation Groups ............................... 70
C. Solution of Equations by  Radicals ................... 72
D. The General Equation of Degree n. .................. 74
E. Solvable Equations of Prime Degree ................. 76
F. Ruler and Compass Construction .................... 80



Download