Saturday, June 23, 2012

Curvature and Homology, Revised Ed. - S. Goldberg

Curvature and Homology, Revised Ed. - S. Goldberg







  • Paperback: 395 pages
  • Publisher: Dover Publications; Revised edition (June 16, 2011)
  • Language: English
  • ISBN-10: 048640207X
  • ISBN-13: 978-0486402079
  • Product Dimensions: 5.2 x 0.9 x 8.5 inches




The purpose of  this book is to give  a  systematic and  "self-contained"
account  along  modern  lines  of  the  subject  with  which  the  title  deals,
as well as to discuss problems of  current interest  in the field. With this
statement  the  author  wishes  to  recall  another  book,  "Curvature  and
Betti  Numbers,"  by  K.  Yano  and  S.  Bochner;  this  tract  is  aimed  at
those  already  familiar  with  differential  geometry,  and  has  served
admirably as a useful reference during the nine years since its appearance.
In the present volume, a coordinate-free treatment is presented wherever
it  is  considered  feasible  and  desirable.  On  the  other  hand,  the  index
notation for tensors is employed whenever it seems to be more adequate.
The book is intended for the reader who has taken the standard courses
in linear algebra, real and complex variables, differential equations, and
point-set topology. Should he lack an elementary knowledge of  algebraic
topology,  he  may  accept  the  results  of  Chapter  I1  and  proceed  from
there.  In Appendix C he will find that some knowledge of  Hilbert  space
methods  is  required.  This book  is  also intended for the more seasoned
mathematician,  who  seeks  familiarity  with  the  developments  in  this
branch  of  differential geometry  in  the  large.  For  him  to  feel  at  home
a knowledge of  the  elements of  Riemannian geometry, Lie groups,  and
algebraic topology is  desirable.
The exercises are  intended, for  the  most  part,  to  supplement  and to
clarify  the  material  wherever  necessary.  This  has  the  advantage  of
maintaining emphasis on the subject under  consideration. Several might
well have been explained in the main body of  the text,  but were omitted
in  order  to  focus  attention  on  the  main  ideas.  The exercises  are  also
devoted  to  miscellaneous results  on  the  homology  properties  of  rather
special spaces, in particular,  &pinched  manifolds, locally convex hyper-
surfaces, and minimal varieties. The inexperienced reader should not be
discouraged  if  the  exercises  appear  difficult.  Rather,  should  he  be
interested,  he is referred to the literature for clarification.
References  are  enclosed  in  square  brackets.  Proper  credit  is  almost
always  given  except  where  a  reference to  a  later  article  is  either  more
informative or otherwise appropriate.  Cross references appear  as (6.8.2)
referring  to  Chapter  VI,  Section  8,  Formula  2  and  also  as  (VI.A.3)
referring to  Chapter  VI,  Exercise A,  Problem  3.
The author owes thanks  to several  colleagues who  read various parts
of  the  manuscript.  He  is  particularly  indebted  to Professor  M.  Obata,
whose advice and diligent care has led to many improvements. Professor
R, Bishop suggested some exercises and further  additions.  Gratitude  is
also  extended to Professors  R.  G.  Bartle and  A.  Heller  for their critical
reading  of  Appendices  A  and  C  as  well  as  to  Dr.  L.  McCulloh  and
Mr.  R.  Vogt for assisting with the proofs.  For the privilege of  attending
his  lectures  on  Harmonic  Integrals  at  Harvard  University,  which  led
to  the  inclusion  of  Appendix  A,  thanks  are  extended  to  Professor
L.  Ahlfors.  Finally,  the  author  expresses  his  appreciation  to  Harvard
University  for the opportunity  of  conducting a seminar on this subject.
It is  a  pleasure  to  acknowledge  the  invaluable  assistance  received  in
the  form  of  partial  financial  support  from  the  Air  Force  Office  of
Scientific  Research.

Download